ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Летела стая гусей. На каждом озере садилась половина гусей и еще полгуся. Остальные летели дальше. Все гуси сели на n озерах. Четыре круга, центры которых являются вершинами выпуклого четырёхугольника, целиком покрывают этот четырёхугольник. Докажите, что из них можно выбрать три круга, которые покрывают треугольник с вершинами в центрах этих кругов. а) Докажите, что если в треугольнике медиана совпадает
с высотой, то этот треугольник равнобедренный.
Докажите тождество: 1 + 3 + 5 +...+ (2n – 1) = n2. Числа в вершинах В неориентированном графе без кратных ребер и петель расставить в вершинах числа так, чтобы если вершины соединены ребром, то числа имели общий делитель, а если нет - то нет. Входные данные. В файле INPUT.TXT записано число N (0<N<7) - количество вершин в графе. Затем записана матрица смежности. Выходные данные. В файл OUTPUT.TXT вывести N натуральных чисел из диапазона Longint, которые вы предлагаете приписать вершинам. Пример файла INPUT.TXT 3 0 1 1 1 0 0 1 0 0 Пример файла OUTPUT.TXT 6 2 3 |
Задача 64185
УсловиеЧисла в вершинах В неориентированном графе без кратных ребер и петель расставить в вершинах числа так, чтобы если вершины соединены ребром, то числа имели общий делитель, а если нет - то нет. Входные данные. В файле INPUT.TXT записано число N (0<N<7) - количество вершин в графе. Затем записана матрица смежности. Выходные данные. В файл OUTPUT.TXT вывести N натуральных чисел из диапазона Longint, которые вы предлагаете приписать вершинам. Пример файла INPUT.TXT 3 0 1 1 1 0 0 1 0 0 Пример файла OUTPUT.TXT 6 2 3 Подсказка Задача на сообразительность (решение этой задачи от
всех не требуется). Вариантов решения, наверно, много. Наиболее изящный
выглядит так: припишем каждому ребру простое число (каждому свое). Тогда
поставим в вершины числа, являющиеся произведением чисел, приписанных
ребрам, выходящим из этой вершины.
РешениеИсточники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке