ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 64355
Темы:    [ Десятичная система счисления ]
[ Признаки делимости на 2 и 4 ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Существует ли такое натуральное n, что для любых ненулевых цифр a и b число  anb  делится на  ab ?  (Через  x...y  обозначено число, получаемое приписыванием друг к другу десятичных записей чисел x, ..., y.)


Решение

Предположим, что такое число  n = nknk+1...n1  существует. Тогда  1n2  кратно 12, а значит, и 4. По признаку делимости на 4  n12  кратно 4. Аналогично из того, что  2n4  кратно 24, следует, что  n14  кратно 4. Значит, и  2 = n14n12  делится на 4, что не так.


Ответ

Не существует.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2012-2013
этап
Вариант 5
класс
Класс 10
задача
Номер 10.5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .