ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 64387
Темы:    [ Выпуклые многоугольники ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4-
Классы: 8,9
В корзину
Прислать комментарий

Условие

В выпуклом многоугольнике из каждой вершины опущены перпендикуляры на все не смежные с ней стороны. Может ли оказаться так, что основание каждого перпендикуляра попало на продолжение стороны, а не на саму сторону?


Решение

Пусть AB – наибольшая сторона многоугольника. Спроецируем все вершины, отличные от A и B, на AB (см. рис.). Если ни одна из проекций не попадает на отрезок AB, то проекция некоторой стороны s, отличной от AB, строго содержит AB, следовательно,   s > AB.   Противоречие.


Ответ

Не может.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2013
класс
Класс 8
задача
Номер 8.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .