ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 64600
Темы:    [ Уравнения в целых числах ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Может ли наименьшее общее кратное целых чисел 1, 2, ..., n быть в 2008 раз больше, чем наименьшее общее кратное целых чисел 1, 2, ..., m?


Решение

Пусть  2k ≤ m < 2k+1,  3l ≤ m < 3l+1.  Если частное     делится на 8, то  n ≥ 2k+3 > 4m > 3m ≥ 3l+1,  и, следовательно, с делится на 3. А 2008 делится на 8, но не на 3.


Ответ

Не может.

Замечания

5 баллов

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 29
Дата 2007/2008
вариант
Вариант весенний тур, тренировочный вариант, 10-11 класс
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .