Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

Плоскость раскрашена в семь цветов. Обязательно ли найдутся две точки одного цвета, расстояние между которыми равно 1?

Вниз   Решение


ABC - прямоугольный треугольник с прямым углом C. Докажите, что  c/r $ \geq$ 2(1 + $ \sqrt{2}$).

ВверхВниз   Решение


Постройте рациональную параметризацию окружности x2 + y2 = 1, проведя прямые через точку (1, 0).

ВверхВниз   Решение


В треугольнике ABC проведена медиана AM. Докажите, что 2AM$ \ge$(b + c)cos($ \alpha$/2).

ВверхВниз   Решение


  – разложение натурального числа m на простые множители. Обозначим  
Докажите, что  aλ(m) ≡ 1 (mod m)  для любого целого числа a, взаимно простого с m.

ВверхВниз   Решение


Володя решил стать великим писателем. Для этого он каждой букве русского языка сопоставил слово, содержащее эту букву. Потом написал слово, сопоставленное букве "A". Дальше каждую букву в нем заменил на сопоставленное ей слово (разделяя слова пробелами), потом в получившемся тексте вновь заменил каждую букву на сопоставленное ей слово, и так всего 40 раз. Володин текст начинается так: "РЯД КОРАБЛЕЙ НА ДРЕМЛЮЩИХ МОРЯХ". Докажите, что этот оборот встречается в Володином тексте еще хотя бы раз.

ВверхВниз   Решение


Докажите, что выпуклый пятиугольник ABCDE с равными сторонами, углы которого удовлетворяют неравенствам  $ \angle$A $ \geq$ $ \angle$B $ \geq$ $ \angle$C $ \geq$ $ \angle$D $ \geq$ $ \angle$E, является правильным.

ВверхВниз   Решение


В остроугольном треугольнике ABC угол B равен 60°, AM и CN – его высоты, а Q – середина стороны AC.
Докажите, что треугольник MNQ – равносторонний.

ВверхВниз   Решение


Автор: Храмцов Д.

Все клетки квадратной таблицы n×n пронумерованы в некотором порядке числами от 1 до n². Петя делает ходы по следующим правилам. Первым ходом он ставит фишку в любую клетку. Каждым последующим ходом Петя может либо поставить новую фишку на какую-то клетку, либо переставить фишку из клетки с номером a ходом по горизонтали или по вертикали в клетку с номером большим, чем a. Каждый раз, когда фишка попадает в клетку, эта клетка немедленно закрашивается; ставить фишку на закрашенную клетку запрещено. Какое наименьшее количество фишек потребуется Пете, чтобы независимо от исходной нумерации он смог за несколько ходов закрасить все клетки таблицы?

Вверх   Решение

Задача 64636
Темы:    [ Числовые таблицы и их свойства ]
[ Теория алгоритмов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Оценка + пример ]
Сложность: 4-
Классы: 10,11
Из корзины
Прислать комментарий

Условие

Автор: Храмцов Д.

Все клетки квадратной таблицы n×n пронумерованы в некотором порядке числами от 1 до n². Петя делает ходы по следующим правилам. Первым ходом он ставит фишку в любую клетку. Каждым последующим ходом Петя может либо поставить новую фишку на какую-то клетку, либо переставить фишку из клетки с номером a ходом по горизонтали или по вертикали в клетку с номером большим, чем a. Каждый раз, когда фишка попадает в клетку, эта клетка немедленно закрашивается; ставить фишку на закрашенную клетку запрещено. Какое наименьшее количество фишек потребуется Пете, чтобы независимо от исходной нумерации он смог за несколько ходов закрасить все клетки таблицы?


Решение

  n фишек достаточно. Действительно, на каждую строку хватит одной фишки: можно поставить её в клетку строки с минимальным номером, а затем обойти все клетки строки в порядке возрастания номеров.
  Покажем, что меньшего числа фишек может и не хватить. Для этого пронумеруем клетки одной диагонали числами 1, 2, ..., n, а остальные клетки нумеруем произвольно. Тогда одна фишка не сможет побывать на двух клетках этой диагонали: если фишка встала на одну её клеток, то следующим ходом она обязана будет пойти на клетку с номером, большим n, и значит, после этого не сможет вернуться на диагональ. Поскольку на каждой клетке диагонали должна побывать фишка, Пете придётся использовать не менее n фишек.


Ответ

n фишек.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2013-2014
этап
1
Вариант 4
класс
Класс 11
1
задача
Номер 11.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .