ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 64701
Темы:    [ Четырехугольники (прочее) ]
[ Осевая и скользящая симметрии (прочее) ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Биссектриса угла (ГМТ) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4-
Классы: 8,9
В корзину
Прислать комментарий

Условие

В выпуклом четырёхугольнике ABCD лучи AB и DC пересекаются в точке K. На биссектрисе угла AKD нашлась такая точка P, что прямые BP и CP делят пополам отрезки AC и BD соответственно. Докажите, что  AB = CD.


Решение

Поскольку прямые BP и CP являются медианами треугольников ABC и BCD, то точки A и C равноудалены от BP, а B и D – от CP. Это значит, что
SPAB = SPBC = SPCD.  С другой стороны, высоты треугольников PAB и PCD, опущенные из точки P, равны, так как P лежит на биссектрисе; значит, равны и их основания, что и требовалось.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2010
класс
Класс 8
задача
Номер 8.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .