ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Какое наименьшее число сторон может иметь нечётноугольник (не обязательно выпуклый), который можно разрезать на параллелограммы? На острове рыцарей и лжецов путешественник пришёл в гости к своему знакомому рыцарю и увидел его за круглым столом с пятью гостями. В равенстве ТИХО + ТИГР = СПИТ замените одинаковые буквы одинаковыми цифрами, а разные буквы – разными цифрами так, чтобы ТИГР был бы как можно меньше (нулей среди цифр нет). На стороне AB квадрата ABCD отмечена точка K, а на стороне BC – точка L так, что KB = LC. Отрезки AL и CK пересекаются в точке P. |
Задача 64839
УсловиеНа стороне AB квадрата ABCD отмечена точка K, а на стороне BC – точка L так, что KB = LC. Отрезки AL и CK пересекаются в точке P. РешениеОтрезок DK при повороте на 90° вокруг центра квадрата переходит в отрезок AL, поэтому эти отрезки перпендикулярны. Аналогично DL ⊥ CK. Таким образом, прямые AL и CK содержат высоты треугольника DKL. Следовательно, P – его ортоцентр, а DP ⊥ KL. Замечания5 баллов Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке