ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 64855
УсловиеПетя подсчитал количество всех возможных m-буквенных слов, в записи которых могут использоваться только четыре буквы T, O, W и N, причём в каждом слове букв T и O поровну. Вася подсчитал количество всех возможных 2m-буквенных слов, в записи которых могут использоваться только две буквы T и O, и в каждом слове этих букв поровну. У кого слов получилось больше? (Слово – это любая последовательность букв.) Решение Установим взаимно-однозначное соответствие между словами Пети и Васи.
Разобьём Васино слово из 2m букв на блоки из двух букв. Заменим каждый блок TT на букву T, блок OO – на букву O, блок TO – на букву W, и блок OT – на букву N. Получится слово из m букв, в котором букв T и O поровну (изначально их было поровну, замена блоков TO и OT убирает равное число букв T и O, а значит, и блоков TT будет столько же, сколько блоков OO). Итак, каждому слову Васи мы сопоставили слово Пети. ОтветСлов получилось поровну. Замечания7 баллов Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|