|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Через точку, расположенную внутри треугольника, проведены прямые, параллельные сторонам треугольника. Эти прямые разбивают треугольник на три треугольника и три четырёхугольника. Пусть a, b и c – параллельные высоты трёх этих треугольников. Найдите параллельную им высоту исходного треугольника. Лёша нарисовал геометрическую картинку, обведя четыре раза свой пластмассовый прямоугольный треугольник, прикладывая короткий катет к гипотенузе и совмещая вершину острого угла с вершиной прямого. Оказалось, что "замыкающий" пятый треугольник – равнобедренный (см. рис., равны именно отмеченные стороны). Найдите острые углы Лёшиного треугольника? |
Задача 64872
УсловиеОкружности ω1 и ω2, касающиеся внешним образом в точке L, вписаны в угол BAC. Окружность ω1 касается луча AB в точке E, а окружность ω2 – луча AC в точке M. Прямая EL пересекает повторно окружность ω2 в точке Q. Докажите, что MQ || AL. РешениеПусть N – вторая точка пересечения ω1 с AL (см. рис.). Тогда композиция симметрии относительно AL и гомотетии с центром A переводит дугу NE в дугу LM. Следовательно, опирающиеся на эти дуги углы ALE и MQE равны, что равносильно утверждению задачи. Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|