ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 65053
УсловиеТочка К – середина гипотенузы АВ прямоугольного равнобедренного треугольника ABC. Точки L и М выбраны на катетах ВС и АС соответственно так, что BL = СМ. Докажите, что треугольник LMK – также прямоугольный равнобедренный. Решение 1Медиана CK треугольника ABC является также высотой и биссектрисой. Поэтому треугольники KBL и KCM равны по двум сторонам и углу между ними. Следовательно, KL = KM, ∠LKM = ∠BKC – ∠BKL + ∠CKM = ∠BKC = 90°, что и требовалось. Решение 2Отразив картинку относительно точки K, мы получим квадрат ACBC' и вписанный в него квадрат LML'M', диагонали LL' и MM' которого пересекаются в точке K и делят его на четыре равнобедренных прямоугольных треугольника. Один из них – треугольник LMK. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|