ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 65084
УсловиеНа доске нарисованы три четырёхугольника. Петя сказал: "На доске нарисованы по крайней мере две трапеции". Вася сказал: "На доске нарисованы по крайней мере два прямоугольника". Коля сказал: "На доске нарисованы по крайней мере два ромба". Известно, что один из мальчиков сказал неправду, а двое других – правду. Докажите, что среди нарисованных на доске четырёхугольников есть квадрат. РешениеТрапеция – не параллелограмм. Поэтому, если Петя прав, то на доске нарисовано не больше одного параллелограмма, и Вася с Колей оба неправы. Но по условию неправду сказал только один человек. Следовательно, это Петя, а Вася и Коля сказали правду. Это значит, что по крайней мере один из трёх нарисованных на доске четырёхугольников одновременно является прямоугольником и ромбом, то есть квадратом. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|