Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В магазин завезли 20 кг сыра, за ним выстроилась очередь. Отпустив сыр очередному покупателю, продавщица безошибочно подсчитывает средний вес покупки по всему проданному сыру и сообщает, на сколько человек хватит оставшегося сыра, если все будут покупать именно по этому среднему весу. Могла ли продавщица после каждого из первых 10 покупателей сообщать, что сыра хватит ещё ровно на 10 человек? Если да, то сколько сыра осталось в магазине после первых 10 покупателей?

Вниз   Решение


Расшифруйте ребус: КИС+КСИ=ИСК. Одинаковым буквам соответствуют одинаковые цифры, разным  — разные.

ВверхВниз   Решение


  На шкуре у Носорога складки – вертикальные и горизонтальные. Если у Носорога на левом боку a вертикальных, b горизонтальных складок, а на правом – c вертикальных и d горизонтальных, будем говорить, что это Носорог в состоянии  (abcd)  или просто Носорог  (abcd).
  Если Носорог чешется каким-то боком о баобаб вверх-вниз, и у Носорога на этом боку есть две горизонтальные складки, то эти две горизонтальные складки разглаживаются. Если двух таких складок нет, то ничего не происходит.
  Аналогично если Носорог чешется боком вперед-назад, и на этом боку есть две вертикальные складки, то они разглаживаются, если же таких двух складок не найдётся, то ничего не происходит.
  Если на каком-то боку две какие-то складки разглаживаются, то на другом боку немедленно появляется две новые складки: одна вертикальная и одна горизонтальная.
  Носороги чешутся часто, случайным боком о случайные баобабы в случайных направлениях.

  Вначале в саванне было стадо Носорогов  (0221).  Докажите, что через некоторое время в саванне появится Носорог  (2021).

Вверх   Решение

Задача 65323
Темы:    [ Дискретное распределение ]
[ Теория графов (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Предел последовательности, сходимость ]
Сложность: 4-
Классы: 10,11
Из корзины
Прислать комментарий

Условие

  На шкуре у Носорога складки – вертикальные и горизонтальные. Если у Носорога на левом боку a вертикальных, b горизонтальных складок, а на правом – c вертикальных и d горизонтальных, будем говорить, что это Носорог в состоянии  (abcd)  или просто Носорог  (abcd).
  Если Носорог чешется каким-то боком о баобаб вверх-вниз, и у Носорога на этом боку есть две горизонтальные складки, то эти две горизонтальные складки разглаживаются. Если двух таких складок нет, то ничего не происходит.
  Аналогично если Носорог чешется боком вперед-назад, и на этом боку есть две вертикальные складки, то они разглаживаются, если же таких двух складок не найдётся, то ничего не происходит.
  Если на каком-то боку две какие-то складки разглаживаются, то на другом боку немедленно появляется две новые складки: одна вертикальная и одна горизонтальная.
  Носороги чешутся часто, случайным боком о случайные баобабы в случайных направлениях.

  Вначале в саванне было стадо Носорогов  (0221).  Докажите, что через некоторое время в саванне появится Носорог  (2021).


Решение

  Построим граф, вершинами которого будем считать состояния Носорога, а рёбрами со стрелками укажем возможные переходы между состояниями и их вероятности.
  Оказывается, всего состояний 8. При этом никакое состояние не является конечным – из любого Носорог может перейти в любое другое. Но вот перейдёт ли? Рассмотрим бесконечную последовательность переходов. Поскольку всего состояний конечное число, в силу принципа Дирихле среди них найдётся такое состояние a, которое встретится бесконечное число раз.

  Из этого состояния есть ненулевая вероятность pa перейти в состояние  (2021),  не заходя по дороге снова в a. Например, из состояния  a = (3101)  есть цепочка , не проходящая вторично через  (3101).  Следовательно,  p(3101) ≥ 0,25³ > 0.
  Поэтому  qa = 1 – pa < 1,  то есть вероятность вернуться из a в a, не заходя в состояние  (2021),  меньше единицы.
  Значит, вероятность события "Носорог никогда не попадает в состояние  (2021)  из состояния a" равна  qaqaqa... = 0.
  Поэтому Носорог обязательно когда-нибудь попадёт в состояние  (2021),  и, значит, такой Носорог будет ходить по саванне.

Источники и прецеденты использования

олимпиада
Название Заочная олимпиада по теории вероятностей и статистике
год
Дата 2011
задача
Номер 15

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .