Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Докажите неравенство     при любых натуральных n и k.

Вниз   Решение


В треугольник АВС вписана окружность и отмечен её центр I и точки касания P, Q, R со сторонами ВС, СА, АВ соответственно. Одной линейкой постройте точку К, в которой окружность, проходящая через вершины В и С, касается (внутренним образом) вписанной окружности.

ВверхВниз   Решение


AB — диаметр окружности, CD — хорда этой окружности. Перпендикуляры к хорде, проведённые через её концы C и D, пересекают прямую AB в точках K и M соответственно. Докажите, что AK = BM.

ВверхВниз   Решение


Что больше 200! или 100200?

ВверхВниз   Решение


Автор: Креков Д.

В угол с вершиной C вписана окружность ω. Рассматриваются окружности, проходящие через C, касающиеся ω внешним образом и пересекающие стороны угла в точках A и B. Докажите, что периметры всех треугольников ABC равны.

ВверхВниз   Решение


На данной прямой l, проходящей через центр O данной окружности, фиксирована точка C (расположенная внутри окружности — прим. ред.). Точки A и A' расположены на окружности по одну сторону от l так, что углы, образованные прямыми AC и A'C с прямой l, равны. Обозначим через B точку пересечения прямых AA' и l. Доказать, что положение точки B не зависит от точки A.

ВверхВниз   Решение


Числа а, b и с лежат в интервале  (0, 1).  Докажите, что  a + b + c + 2abc > ab + bc + ca + 2.

Вверх   Решение

Задача 65617
Темы:    [ Неравенство Коши ]
[ Разложение на множители ]
Сложность: 4-
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

Числа а, b и с лежат в интервале  (0, 1).  Докажите, что  a + b + c + 2abc > ab + bc + ca + 2.


Решение

  Поскольку    (неравенство Коши), то достаточно доказать, что
a + b + c + 2abc > ab + bc + ca + a + bc  ⇔  b + c + 2abc > ab + 2bc + ca  ⇔  (1 – a)(b + c – 2bc) > 0  ⇔  (1 – a)(b(1 – c) + c(1 – b)) > 0.
  Но последнее неравенство сразу следует из условия задачи.

Источники и прецеденты использования

олимпиада
Название Московская математическая регата
год
Год 2015/16
класс
Класс 10
задача
Номер 10.4.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .