ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 66021
УсловиеУчитель собирается дать детям задачу следующего вида. Он сообщит им, что он задумал многочлен P(x) степени 2017 с целыми коэффициентами, старший коэффициент которого равен 1. Затем он сообщит им k целых чисел n1, n2, ..., nk и отдельно сообщит значение выражения P(n1)P(n2)...P(nk). По этим данным дети должны найти многочлен, который мог бы задумать учитель. При каком наименьшем k учитель сможет составить задачу такого вида так, чтобы многочлен, найденный детьми, обязательно совпал бы с задуманным? Решение Оценка. Пусть учитель использовал некоторое k ≤ 2016, задумав многочлен P(x). ОтветПри k = 2017. ЗамечанияС использованием указанной теоремы можно показать, что многочлен P(x) = (x – n1)(x – n2)...(x – n2017) ± 1 подходит при любых различных целых n1, n2, ..., n2017. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке