ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 66189
Темы:    [ Десятичная система счисления ]
[ Периодичность и непериодичность ]
[ Доказательство от противного ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Последовательность нулей и единиц строится следующим образом: на k-м месте ставится ноль, если сумма цифр числа k чётна, и единица, если сумма цифр числа k нечётна. Докажите, что эта последовательность непериодична.


Решение

Допустим, последовательность имеет период d и предпериод m. Возьмём такое n, что  10n > m + d.  Суммы цифр чисел 10n и 10n+1 равны 1, а суммы цифр чисел  10n – d  и  10n+1d  отличаются на 9, то есть имеют разную чётность. Противоречие.

Замечания

4 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 28
Дата 2006/2007
вариант
Вариант весенний тур, тренировочный вариант, 10-11 класс
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .