ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

На некоторые клетки квадратной доски 4×4 выкладывают стопкой золотые монеты, а на остальные клетки – серебряные. Можно ли положить монеты так, чтобы в каждом квадрате 3×3 серебряных монет было больше, чем золотых, а на всей доске золотых было больше, чем серебряных?

   Решение

Задача 66227
Темы:    [ Частные случаи тетраэдров (прочее) ]
[ Подобные треугольники (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11
В корзину
Прислать комментарий

Условие

Даны два тетраэдра. Ни у одного из них нет двух подобных граней, но каждая грань первого тетраэдра подобна какой-то грани второго.
Обязательно ли эти тетраэдры подобны?


Решение

Пусть t – число, достаточно близкое к 1. Тогда существуют два тетраэдра, основаниями которых являются правильные треугольники со стороной 1, а боковые стороны у одного равны t, t², t³, а у другого – 1/t, 1/t², 1/t³. Они, очевидно, удовлетворяют условию, но не подобны.


Ответ

Не обязательно.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2017
тур
задача
Номер 24

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .