ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 66479
УсловиеВ клетчатом квадрате со стороной 2018 часть клеток покрашены в белый цвет, остальные — в чёрный. Известно, что из этого квадрата можно вырезать квадрат $10\times 10$, все клетки которого белые, и квадрат $10\times 10$, все клетки которого чёрные. При каком наименьшем $d$ можно гарантировать, что из него можно вырезать квадрат $10\times 10$, в котором количество чёрных и белых клеток отличается не больше чем на $d$?РешениеРассмотрим рамку, ограничивающую квадрат $10 \times 10$, полностью состоящий из чёрных клеток. При последовательном перемещении этой рамки направо, налево, вверх и вниз можно добраться до квадрата $10 \times 10$, полностью состоящего из белых клеток. При этом на каждом шаге перемещения из рамки убираются $10$ клеток и в неё добавляются $10$ клеток. Таким образом, за один шаг количество чёрных клеток, содержащихся внутри квадрата, изменяется не более чем на $10$. В частности, по пути от полностью чёрного до полностью белого квадрата встретится квадрат, в котором от $45$ до $55$ чёрных клеток. Для такого квадрата количество чёрных и белых клеток отличается не более чем на $10$. Построим квадрат $2018\times 2018$, в котором во всех квадратах $10\times 10$ количество чёрных и белых клеток отличается не меньше чем на $10$. Для этого в квадрате $2018\times 2018$ проведём диагональ из нижнего левого угла в верхний правый. Все клетки над диагональю покрасим белым, а диагональ и клетки под диагональю — чёрным. В любом квадрате $10\times 10$ все клетки диагонали из нижнего левого угла в верхний правый покрашены одним цветом, причём если этот цвет чёрный, то и все клетки над диагональю чёрные, значит, их хотя бы $55$, и количество чёрных и белых клеток отличается хотя бы на $10$. Аналогично, если диагональ белая, то все клетки под диагональю белые, и их не менее $55$. Ответ10.Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|