|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
классы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи По заданной последовательности положительных чисел q1,..., qn, ... строится последовательность многочленов следующим образом: Доказать, что для любых трёх чисел, меньших 1000000, найдётся число, меньшее 100 (но большее 1), взаимно простое с каждым из них. |
Страница: 1 2 3 4 5 6 >> [Всего задач: 29]
В строку выписано 81 ненулевое число. Сумма любых двух соседних чисел положительна, а сумма всех чисел отрицательна. Каким может быть знак произведения всех чисел?
Страница: 1 2 3 4 5 6 >> [Всего задач: 29] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|