ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 66783
Темы:    [ Вписанные и описанные окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Автор: Mahdi Etesami Fard

Окружность $\omega$, вписанная в треугольник $ABC$, касается сторон $BC$, $CA$ и $AB$ в точках $D$, $E$ и $F$ соответственно. Перпендикуляр из $E$ на $DF$ пересекает прямую $BC$ в точке $X$, а перпендикуляр из $F$ на $DE$ пересекает $BC$ в точке $Y$. Отрезок $AD$ пересекает $\omega$ во второй раз в точке $Z$. Докажите, что описанная окружность треугольника $XYZ$ касается $\omega$.

Решение

Пусть $I$ – центр $\omega$. Заметим, что $\angle FYX=\angle ICB=\angle FEX$, т.е. четырехугольник $XYEF$ – вписанный. Кроме того, прямые $BC$, $EF$ и касательная к $\omega$ в точке $Z$ пересекаются в одной точке $T$ – полюсе прямой $AD$ относительно $\omega$. Поэтому $TZ^2=TF\cdot TE=TX\cdot TY$, т.е. $TZ$ – касательная к окружности $XYZ$.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2019
Заочный тур
задача
Номер 15 [9-11 кл]

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .