ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 67109
Темы:    [ Сфера, вписанная в пирамиду ]
[ Прямые и плоскости в пространстве (прочее) ]
[ Шестиугольники ]
[ Теорема Паскаля ]
Сложность: 5
Классы: 10,11
В корзину
Прислать комментарий

Условие

Пусть $OABCDEF$ – шестигранная пирамида с основанием $ABCDEF$, описанная около сферы $\omega$. Плоскость, проходящая через точки касания $\omega$ с гранями $OFA$, $OAB$ и $ABCDEF$, пересекает ребро $OA$ в точке $A_1$; аналогично определяются точки $B_1$, $C_1$, $D_1$, $E_1$ и $F_1$. Пусть $\ell$, $m$ и $n$ – прямые $A_1D_1$, $B_1E_1$ и $C_1F_1$ соответственно. Оказалось, что $\ell$ и $m$ лежат в одной плоскости, $m$ и $n$ также лежат в одной плоскости. Докажите, что $\ell$ и $n$ лежат в одной плоскости.

Решение

Конус с вершиной $O$, описанный около сферы, пересекает основание пирамиды по эллипсу, вписанному в шестиугольник $ABCDEF$. По теореме Брианшона прямые $AD$, $BE$ и $CF$ пересекаются в некоторой точке $L$. Тогда точка пересечения прямых $A_1D_1$ и $B_1E_1$ лежит на прямой $OL$. На этой же прямой лежит и точка пересечения прямых $B_1E_1$ и $C_1F_1$. Следовательно, прямые $\ell$, $m$, $n$ и $OL$ пересекаются в одной точке.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2022
Заочный тур
задача
Номер 24 [11 кл]

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .