Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 67109
Темы:    [ Сфера, вписанная в пирамиду ]
[ Прямые и плоскости в пространстве (прочее) ]
[ Шестиугольники ]
[ Теорема Паскаля ]
Сложность: 5
Классы: 10,11
В корзину
Прислать комментарий

Условие

Пусть OABCDEF – шестигранная пирамида с основанием ABCDEF, описанная около сферы ω. Плоскость, проходящая через точки касания ω с гранями OFA, OAB и ABCDEF, пересекает ребро OA в точке A1; аналогично определяются точки B1, C1, D1, E1 и F1. Пусть , m и n – прямые A1D1, B1E1 и C1F1 соответственно. Оказалось, что и m лежат в одной плоскости, m и n также лежат в одной плоскости. Докажите, что и n лежат в одной плоскости.

Решение

Конус с вершиной O, описанный около сферы, пересекает основание пирамиды по эллипсу, вписанному в шестиугольник ABCDEF. По теореме Брианшона прямые AD, BE и CF пересекаются в некоторой точке L. Тогда точка пересечения прямых A1D1 и B1E1 лежит на прямой OL. На этой же прямой лежит и точка пересечения прямых B1E1 и C1F1. Следовательно, прямые , m, n и OL пересекаются в одной точке.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2022
Заочный тур
задача
Номер 24 [11 кл]

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .