ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 67118
Темы:    [ Вневписанные окружности ]
[ Вспомогательные подобные треугольники ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Пусть $BH$ – высота прямоугольного треугольника $ABC$ $(\angle B=90^{\circ})$. Вневписанная окружность треугольника $ABH$, противолежащая вершине $B$, касается прямой $AB$ в точке $A_{1}$; аналогично определяется точка $C_{1}$. Докажите, что $AC\parallel A_{1}C_{1}$.

Решение

Отрезки $BA_1$, $BC_1$ равны полупериметрам треугольников $ABH$, $BCH$ соответственно. Так как эти треугольники подобны, то $BA_1:BC_1=BA:BC$, откуда следует утверждение задачи.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2022
класс
Класс 9
задача
Номер 9.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .