ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 67130
Темы:    [ Две касательные, проведенные из одной точки ]
[ Общая касательная к двум окружностям ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Из точки $A$ к окружности $\Omega$ проведены касательные $AB$ и $AC$. На отрезке $BC$ отмечена середина $M$ и произвольная точка $P$. Прямая $AP$ пересекает окружность $\Omega$ в точках $D$ и $E$. Докажите, что общие внешние касательные к окружностям $MDP$ и $MPE$ пересекаются на средней линии треугольника $ABC$.

Решение

Пусть $K$ – середина $AP$. Так как $K$ – центр описанной окружности треугольника $APM$, то $KP=KM$, т.е. $K$ лежит на линии центров окружностей $MDP$ и $MPE$. При этом, поскольку точки $A$, $P$, $D$ и $E$ образуют гармоническую четверку, то $KP^2=KD\cdot KE$. Значит, $K$ – центр внешней гомотетии этих окружностей.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2022
класс
Класс 10
задача
Номер 10.5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .