ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Для каждого натурального n обозначим через P(n) число разбиений n в сумму натуральных слагаемых (разбиения, отличающиеся лишь порядком слагаемых, считаются одинаковыми; например, P(4) = 5, потому что 4 = 4 = 1 + 3 = 2 + 2 = 1 + 1 + 2 = 1 + 1 + 1 + 1 – пять способов). |
Задача 76504
Условие
Доказать, что разносторонний треугольник нельзя разрезать на два равных
треугольника.
РешениеПредположим, что отрезок CD разрезает разносторонний треугольник ABC на два равных треугольника ACD и BCD. Эти треугольники имеют, в частности, равные площади, поэтому AD = BD. Кроме того, сторона CD общая. Следовательно, оставшиеся стороны равны, т.е. AC = BC. Приходим к противоречию. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке