ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 76521
Темы:    [ Свойства коэффициентов многочлена ]
[ Симметрия и инволютивные преобразования ]
[ Формулы сокращенного умножения (прочее) ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Доказать, что в произведении  (1 – x + x² – x³ + ... – x99 + x100)(1 + x + x² + x³ + ... + x99 + x100)  после раскрытия скобок и приведения подобных членов не остаётся членов, содержащих x в нечётной степени.


Подсказка

Рассматриваемое произведение P(x) является чётной функцией:  P(– x) = P(x).


Решение 1

Данное произведение равно   


Решение 2

Данное произведение P(x) имеет вид Q(x)Q(– x), значит,  P(– x) = P(x)  и  2P(x) = P(x) + P(– x).  Но в правой части все одночлены нечётной степени, очевидно, сокращаются.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 9
Год 1946
вариант
Класс 7,8
Тур 1
задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .