ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 77959
Темы:    [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3+
Классы: 9,10
В корзину
Прислать комментарий

Условие

Имеются семь жетонов с цифрами 1, 2, 3, 4, 5, 6, 7.
Докажите, что ни одно семизначное число, составленное посредством этих жетонов, не делится на другое.


Решение

Все такие числа дают одинаковые остатки при делении на 9 (но сами на 9 не делятся). Пусть  a = kb,  где a и b – разные семизначные числа, составленные посредством этих жетонов. Тогда  (k – 1)b = a – b  делится на 9, то есть  k – 1  делится на 9. Но это невозможно, так как, очевидно,  k < 7.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 15
Год 1952
вариант
Класс 8
Тур 2
задача
Номер 3
олимпиада
Название Московская математическая олимпиада
год
Номер 15
Год 1952
вариант
Класс 9
Тур 2
задача
Номер 3
книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 4
Название Арифметика остатков
Тема Деление с остатком. Арифметика остатков
параграф
Номер 5
Название Признаки делимости
Тема Признаки делимости (прочее)
задача
Номер 04.188

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .