ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 78069
Темы:    [ Числовые таблицы и их свойства ]
[ Средние величины ]
[ Доказательство от противного ]
Сложность: 3
Классы: 9,10
В корзину
Прислать комментарий

Условие

На клетчатой бумаге написана таблица, причём в каждой клетке стоит число, равное среднему арифметическому четырёх чисел, стоящих в соседних клетках. Все числа в таблице различны. Докажите, что наибольшее число стоит с края (то есть по крайней мере одна из соседних клеток отсутствует).


Решение

Предположим, что наибольшее число a стоит не с края. Тогда у него в таблице есть все четыре соседних числа a1, a2, a3, a4 и при этом
a = ¼ (a1 + a2 + a3 + a4).  Но  a > a1a > a2a > a3a > a4.  Поэтому  a > ¼ (a1 + a2 + a3 + a4).  Противоречие.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 19
Год 1956
вариант
Класс 9
Тур 1
задача
Номер 3
олимпиада
Название Московская математическая олимпиада
год
Номер 19
Год 1956
вариант
Класс 8
Тур 1
задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .