ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 78128
УсловиеДоказать, что число всех цифр в последовательности
1, 2, 3,..., 10k равно
числу всех нулей в последовательности
1, 2, 3,..., 10k + 1.
РешениеСопоставим цифре числа из первой последовательности нуль числа из второй последовательности следующим образом. Напишем после данной цифры нуль. В результате получим число из второй последовательности с отмеченным нулём. Нашей цифре мы сопоставляем именно этот нуль. Наоборот, нулю числа из второй последовательности сопоставим цифру числа из первой последовательности следующим образом. Отметим цифру, которая стоит перед данным нулём, и после этого нуль вычеркнем. В результате получим число из первой последовательности с отмеченной цифрой. Нашему нулю мы сопоставляем именно эту цифру. Эти операции взаимно обратны, поэтому мы получаем взаимно однозначное соответствие между цифрами числа первой последовательности и нулями чисел второй последовательности. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке