ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 78131
Темы:    [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

В круге проведены два диаметра AB и CD. Доказать, что если M — произвольная точка окружности, а P и Q — её проекции на диаметры AB и CD, то длина отрезка PQ не зависит от выбора точки M.

Решение

Обозначим центр окружности через O. Точки P и Q лежат на окружности с диаметром OM, т. е. точки O, P, Q и M лежат на окружности постоянного радиуса R/2. При этом либо  $ \angle$POQ = $ \angle$AOD, либо  $ \angle$POQ = $ \angle$BOD = 180o - $ \angle$AOD, т. е. длина хорды PQ постоянна.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 21
Год 1958
вариант
Класс 7
Тур 1
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .