|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Боря задумал целое число, большее 100. Кира называет целое число, большее 1. Если Борино число делится на это число, Кира выиграла, иначе Боря вычитает из своего числа названное, и Кира называет следующее число. Ей запрещается повторять числа, названные ранее. Если Борино число станет отрицательным – Кира проигрывает. Есть ли у неё выигрышная стратегия? |
Задача 78299
УсловиеСтороны выпуклого многоугольника, периметр которого равен 12, отодвигаются на расстояние d = 1 во внешнюю сторону. Доказать, что площадь многоугольника увеличится по крайней мере на 15.РешениеПолученный многоугольник содержит фигуру, которая состоит из точек, удалённых от исходного многоугольника не более чем на d = 1. Для выпуклого многоугольника площади S и периметра P такая фигура имеет площадь S + dP +Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|