Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Дан многочлен P(x) степени n со старшим коэффициентом, равным 1. Известно, что если x – целое число, то P(x) – целое число, кратное p
(p – натуральное число). Доказать, что n! делится на p.

Вниз   Решение


На круглой поляне радиуса R растут три круглые сосны одинакового диаметра. Центры их стволов находятся на расстоянии $ {\frac{R}{2}}$ от центра поляны в вершинах равностороннего треугольника. Два человека, выйдя одновременно из диаметрально противоположных точек поляны, обходят поляну по краю с одинаковой скоростью и в одном направлении и всё время не видят друг друга. Увидят ли друг друга три человека, если они так же будут обходить поляну, выйдя из точек, находящихся в вершинах вписанного в поляну правильного треугольника?

ВверхВниз   Решение


Какое наибольшее количество чисел можно выбрать из набора 1, 2, ..., 1963 так, чтобы сумма каждых двух выбранных чисел делилась на 26?

Вверх   Решение

Задача 78491
Тема:    [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

Какое наибольшее количество чисел можно выбрать из набора 1, 2, ..., 1963 так, чтобы сумма каждых двух выбранных чисел делилась на 26?


Решение

Ясно, что это число больше 2. Если  x + y ≡ y + z ≡ 0 (mod 26),  то  x ≡ z (mod 26).  Поэтому если чисел больше трёх, то они все сравнимы между собой по модулю 26. Отсюда следует, что для любого из выбранных чисел  2x ≡ 0 (mod 26).  Значит, либо все числа кратны 26, либо все они сравнимы с 13 по модулю 26. Поскольку   1963 = 75·26 + 13,  то чисел первого типа будет 75, а чисел второго типа – 76.


Ответ

76 чисел.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 26
Год 1963
вариант
1
Класс 7
Тур 2
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .