Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Имеется две кучки камней - по 7 в каждой. За ход разрешается взять любое количество камней, но только из одной кучки. Проигрывает тот, кому нечего брать.

Вниз   Решение


Диагонали AD, BE и CF шестиугольника ABCDEF пересекаются в одной точке. Пусть A' — точка пересечения прямых AC и FB, B' — точка пересечения BD и AC, C' — точка пересечения CE и BD. Докажите, что точки пересечения прямых A'B' и D'E', B'C' и E'F', C'D' и F'A' лежат на одной прямой.

ВверхВниз   Решение


Дана замкнутая пространственная ломаная с вершинами A1, A2, ..., An, причём каждое звено пересекает фиксированную сферу в двух точках, а все вершины ломаной лежат вне сферы. Эти точки делят ломаную на 3n отрезков. Известно, что отрезки, прилегающие к вершине A1, равны между собой. То же самое верно и для вершин A2, A3, ..., An - 1. Доказать, что отрезки, прилегающие к вершине An, также равны между собой.

Вверх   Решение

Задача 78779
Темы:    [ Пространственные многоугольники ]
[ Сферы (прочее) ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3
Классы: 11
Из корзины
Прислать комментарий

Условие

Дана замкнутая пространственная ломаная с вершинами A1, A2, ..., An, причём каждое звено пересекает фиксированную сферу в двух точках, а все вершины ломаной лежат вне сферы. Эти точки делят ломаную на 3n отрезков. Известно, что отрезки, прилегающие к вершине A1, равны между собой. То же самое верно и для вершин A2, A3, ..., An - 1. Доказать, что отрезки, прилегающие к вершине An, также равны между собой.

Решение

Отрезки, прилегающие к вершине Ai, где i = 1, 2,...n - 1, равны. По теореме о произведении отрезков секущих, проведённых из одной точки, отрезки тех же звеньев, лежащие внутри сферы, также равны между собой. А значит, все отрезки, лежащие внутри сферы, равны между собой, поскольку для соседних вершин один из отрезков является общим. Тогда получим, что они равны и для звеньев с вершиной An, тем самым по той же теореме и прилегающие к An отрезки этих звеньев равны между собой. Что и требовалось доказать.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 34
Год 1971
вариант
Класс 10
Тур 1
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .