ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 79272
Условие
Выпуклый многоугольник обладает следующим свойством: если все прямые, на
которых лежат его стороны, параллельно перенести на расстояние 1 во внешнюю
сторону, то полученные прямые образуют многоугольник, подобный исходному,
причём параллельные стороны окажутся пропорциональными. Доказать, что в данный
многоугольник можно вписать окружность.
РешениеЗаметим, что обратное утверждение доказать значительно проще: если в
многоугольник можно вписать окружность, то при отодвигании всех его сторон на
одно и тоже расстояние (в частности, на единицу) получается подобный
многоугольник, причём центром подобия служит центр окружности.
k + k2 + k3 + ... + kn + ... = r.
Таким образом, окружность с центром O и радиусом r касается всех сторон многоугольника P'.
Заметим, что в приведённом доказательстве было несущественно, какие именно стороны соответствуют друг другу при преобразовании подобия f, переводящем P в P'. Можно доказать такую лемму: если многоугольники P и P' (полученный из P отодвиганием сторон на 1) подобны с каким угодно соответствием сторон (с "поворотом" или "симметричным отражением" порядка сторон), то всегда будет иметь место и подобие c естественным порядком сторон — гомотетия с коэффициентом k (0 < k < 1). Доказательство, независимое от первого решения, мы приведём в конце, а пока дадим ещё два решения задачи, опирающихся на эту лемму (то есть подразумевающих естественное соответствие сторон при подобии). Второй способ. Пусть [AB] — сторона P, [A'B'] — соответствующая сторона P', O — точка пересечения (AA') и (BB'). Тогда Третий способ. Разрежем "щель" между многоугольниками P и P' на прямоугольники высоты 1 с основаниями A'B', B'С', С'D', ... и "ромбоиды" — четырёхугольники, остающиеся у каждой вершины A, B, C, .... Очевидно, из этих ромбоидов можно составить один многоугольник, описанный около окружности радиуса единица, причём его углы соответственно конгруэнтны Доказательство леммы. Будем для каждой стороны [AB] многоугольника P обозначать через [A'B'] ту сторону P', которая получается при отодвигании AB. Пусть при подобии стороне [A1B1] соответствует [A2'B2']: [A1B1] Тогда Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке