ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 79470
УсловиеВ центре квадрата сидит заяц, а в каждом из четырёх углов по одному волку. Может ли заяц выбежать из квадрата, если волки могут бегать только по сторонам квадрата с максимальной скоростью в 1,4 раза большей, чем максимальная скорость зайца?РешениеОтвет: может.Для этого заяц должен придерживаться такой стратегии. Сначала он выбирает произвольную вершину A квадрата и бежит к ней по диагонали с максимальной скоростью до тех пор, пока не окажется от A на расстоянии, меньшем ( − 1,4) (например, на расстоянии 0,005; сторону квадрата полагаем равной 1). Затем он, не меняя скорости, сворачивает на 90o и движется перпендикулярно диагонали к той стороне квадрата, на которой находится только один волк (если в рассматриваемый момент в A находится волк, то заяц сворачивает на 90o в произвольную сторону; Нетрудно видеть, что в момент, когда заяц пересечёт сторону квадрата, ни один волк не сможет оказаться в той же точке этой стороны. Замечание. Если скорость волка в раз больше скорости зайца, то волки уже ловят зайца: они в каждый момент оказываются в концах "креста" с центром "заяц", отрезки которого параллельны диагоналям квадрата. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|