ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 79493
Темы:    [ Геометрия на клетчатой бумаге ]
[ Полуинварианты ]
Сложность: 4+
Классы: 9,10
В корзину
Прислать комментарий

Условие

Квадратное поле разбито на 100 одинаковых участков, 9 из которых поросли бурьяном. Известно, что бурьян за год распространяется на те и только те участки, у каждого из которых не менее двух соседних участков уже поражены бурьяном (участки соседние, если они имеют общую сторону). Докажите, что полностью все поле бурьяном не зарастёт.

Решение

Легко проверить, что длина границы всего заросшего бурьяном участка (или нескольких участков) не возрастает. В начальный момент она не превосходит 9 . 4 = 36, поэтому в конечный момент она не может быть равной 40.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 23
Название Делимость, инварианты, раскраски
Тема Неопределено
параграф
Номер 3
Название Инварианты
Тема Инварианты
задача
Номер 23.016
олимпиада
Название Московская математическая олимпиада
год
Номер 49
Год 1986
вариант
Класс 8
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .