Страница: 1
2 3 4 5 6 7 >> [Всего задач: 73]
|
|
Сложность: 2+ Классы: 7,8,9
|
Шоколадка имеет размер 4×10 плиток. За один ход разрешается разломать один из уже имеющихся кусочков на два вдоль прямолинейного разлома. За какое наименьшее число ходов можно разбить всю шоколадку на кусочки размером в одну плитку?
В стране несколько городов, попарные расстояния между которыми различны.
Путешественник отправился из города А в самый удаленный от него город Б,
оттуда - в самый удаленный от него город С и т.д. Докажите, что
если С не совпадает с А, то путешественник никогда не вернется в А.
|
|
Сложность: 3- Классы: 6,7,8
|
Двое по очереди ломают шоколадку 6×8. За ход разрешается сделать прямолинейный разлом любого из кусков вдоль углубления. Проигрывает тот, кто не сможет сделать ход. Кто выиграет в этой игре?
В каждой из n стран правит либо партия правых, либо партия левых. Каждый год в одной из стран A может поменяться власть. Это может произойти в том случае, если в большинстве граничащих со страной A стран правит не та партия, которая правит в стране A. Докажите, что смены правительств не могут продолжаться бесконечно.
В колоде 52 карты, по 13 каждой масти. Ваня вынимает из колоды по
одной карте. Вынутые карты в колоду не возвращаются. Каждый раз
перед тем, как вынуть карту, Ваня загадывает какую-нибудь масть.
Докажите, что если Ваня каждый раз будет загадывать масть, карт
которой в колоде осталось не меньше, чем карт любой другой масти,
то загаданная масть совпадет с мастью вынутой карты не менее 13 раз.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 73]