ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 79495
УсловиеНа листе бумаги отмечены точки A, B, C, D. Распознающее устройство может абсолютно точно выполнять два типа операций: а) измерять в сантиметрах расстояние между двумя заданными точками; б) сравнивать два заданных числа. Какое наименьшее число операций нужно выполнить этому устройству, чтобы наверняка определить, является ли четырёхугольник ABCD прямоугольником? РешениеЧтобы определить, является ли ABCD прямоугольником, достаточно проверить равенства AB = CD, BC = AD и AC = BD — итого 9 операций (по 3 операции на каждое равенство: два измерения и одно сравнение). Прямоугольник ABCD будет квадратом, если AB = BC — для этого нужна ещё одна, 10-я, операция сравнения длин отрезков AB и BC. Докажем, что меньшим числом операций в обоих случаях не обойтись, т. е. что все указанные операции обязательно нужно выполнить. Действительно, если мы не знаем, что какие-то две противоположные стороны четырёхугольника равны, то нельзя даже утверждать, что ABCD — параллелограмм, ведь годится и равнобедренная трапеция (её диагонали равны). Поэтому проверка равенств AB = CD и BC = AD необходима. Если же мы не знаем, что AC = BD, то ABCD может быть произвольным параллелограммом. Значит, необходима и проверка равенства диагоналей. Наконец, в случае квадрата нужна также проверка равенства двух соседних сторон. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке