ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан многочлен P(x) степени 2003 с действительными коэффициентами, причем старший коэффициент равен 1. Имеется бесконечная последовательность целых чисел a1, a2, ..., такая, что P(a1) = 0, P(a2) = a1, P(a3) = a2 и т. д. Докажите, что не все числа в последовательности a1, a2, ... различны. Составьте из прямоугольников 1х1, 1х2, 1х3,…,1х13 прямоугольник, каждая сторона которого больше 1. |
Задача 79660
УсловиеСоставьте из прямоугольников 1х1, 1х2, 1х3,…,1х13 прямоугольник, каждая сторона которого больше 1.
РешениеПлощадь искомого прямоугольника должна быть равна 1 + 2 + ... + 13 = 91. Так как 91 раскладывается только в произведение 7 × 13, то стороны прямоугольника должны быть равны 7 и 13. Замостить его исходными прямоугольниками можно, например, так:
Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке