ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 86899
Темы:    [ Линейные зависимости векторов ]
[ Векторы (прочее) ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Сторона основания правильной треугольной пирамиды равна a , боковое ребро образует с плоскостью основания угол 45o . Найдите радиус вписанной сферы.

Решение

Пусть M – центр основания ABC правильной треугольной пирамиды ABCP . Центр O сферы радиуса r , вписанной в данную правильную пирамиду расположен на высоте PM , а сфера касается грани BPC в точке, лежащей на апофеме PL . Рассмотрим сечение пирамиды плоскостью APL . Эта плоскость пересекает сферу по окружности радиуса r , вписанной в угол ALP , причём OM = r . Обозначим через β угол боковой грани пирамиды с плоскостью её основания. Тогда

r = OM = LM tg OLM = · tg .

Из прямоугольного треугольника PML находим, что
tg β = = = 2.

Поскольку tg β = , имеем уравнение = 2 . Условию задачи удовлетворяет положительный корень этого уравнения:
tg = .

Следовательно,
r = · tg = .


Ответ

r = .

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
неизвестно
Номер 7075

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .