ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 87106
Темы:    [ Неравенства с площадями ]
[ Боковая поверхность тетраэдра и пирамиды ]
[ Площадь и ортогональная проекция ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Докажите, что площадь любой грани тетраэдра меньше суммы площадей трёх остальных его граней.

Решение

Проекции на плоскость грани тетраэдра трёх остальных его граней полностью покрывают эту грань, а площадь ортогональной проекции треугольника на плоскость равна площади проектируемого треугольника, умноженной на косинус угла между этой плоскостью и плоскостью проектируемого треугольника.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
неизвестно
Номер 7425

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .