ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 87393
Темы:    [ Свойства сечений ]
[ Сфера, вписанная в пирамиду ]
Сложность: 4
Классы: 10,11
В корзину
Прислать комментарий

Условие

Дана треугольная пирамида ABCD . Точка F взята на ребре AD , а точка N взята на ребре DB , причём DN:NB = 1:2 . Через точки F , N и точку пересечения медиан треугольника ABC проведена плоскость, пересекающая ребро CB в точке H . Через точку H проведена плоскость, параллельная плоскости ADB и пересекающая рёбра CA и CD в точках L и K соответственно. Известно, что CH:HB = (AF:FD)2 и что радиус шара, вписанного в пирамиду CHLK , равен R . Найдите отношение площади треугольника ABC к сумме площадей всех граней пирамиды ABCD , если перпендикуляр, опущенный из вершины D на плоскость ABC , равен h .

Ответ

.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
неизвестно
Номер 7888

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .