ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 87399
Темы:    [ Площадь сечения ]
[ Объем помогает решить задачу ]
[ Многогранники и многоугольники (прочее) ]
[ Боковая поверхность тетраэдра и пирамиды ]
Сложность: 4
Классы: 10,11
В корзину
Прислать комментарий

Условие

Отрезок FG параллелен плоскости выпуклого пятиугольника ABCDE , причём точки A и G лежат по разные стороны от плоскости CBF . В треугольную пирамиду BCFG вписан шар. Отношение расстояния от его центра до прямой FG к расстоянию от прямой FG до плоскости ABCDE равно k . Двугранный угол пирамиды BCFG с ребром BF равен α . Известно, что sin CFB : sin CFG = l . Через середину отрезка AF проведена плоскость, параллельная плоскости ABCDE . Найдите площадь сечения плоскостью P многогранника ABCDEFG , составленного из пирамиды FABCDE с вершиной F и треугольной пирамиды BCFG , если известно, что площадь пятиугольника ABCDE равна S , а сумма площадей всех граней пирамиды BCFG равна .

Ответ

(S + k) .

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
неизвестно
Номер 7894

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .