Условие
Отрезок
FG параллелен плоскости выпуклого пятиугольника
ABCDE ,
причём точки
A и
G лежат по разные стороны от плоскости
CBF .
В треугольную пирамиду
BCFG вписан шар. Отношение расстояния от
его центра до прямой
FG к расстоянию от прямой
FG до плоскости
ABCDE равно
k . Двугранный угол пирамиды
BCFG с ребром
BF
равен
α . Известно, что
sin CFB : sin CFG = l .
Через середину отрезка
AF проведена плоскость, параллельная плоскости
ABCDE . Найдите площадь сечения плоскостью
P многогранника
ABCDEFG ,
составленного из пирамиды
FABCDE с вершиной
F и треугольной пирамиды
BCFG , если известно, что площадь пятиугольника
ABCDE равна
S , а
сумма площадей всех граней пирамиды
BCFG равна
.
Ответ
(
S + k)
.
Источники и прецеденты использования
|
web-сайт |
Название |
Система задач по геометрии Р.К.Гордина |
URL |
http://zadachi.mccme.ru |
неизвестно |
Номер |
7894 |