ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 87400
Темы:    [ Площадь сечения ]
[ Объем помогает решить задачу ]
[ Многогранники и многоугольники (прочее) ]
[ Боковая поверхность тетраэдра и пирамиды ]
Сложность: 4
Классы: 10,11
В корзину
Прислать комментарий

Условие

В треугольной пирамиде CDEF ребро EF перпендикулярно плоскости CDF . Четырёхугольник ABCD лежит в плоскости, параллельной прямой EF . В четырёхугольную пирамиду EABCD с вершиной E вписан шар. Отношение расстояния от центра шара до прямой AB к расстоянию от точки E до плоскости ABCD равно l , а отношение отрезка EF к к расстоянию от точки E до плоскости ABCD равно k . Пусть точка C' – проекция точки C на плоскость ABE . Известно, что tg C'AB: tg CAB = m . Через середину отрезка AE проведена плоскость P , параллельная плоскости BCD . Найдите площадь сечения плоскостью P многогранника ABCDEF , составленного из пирамид CDEF и EABCD, если известно, что площадь треугольника CDF равна S , а сумма площадей всех граней пирамиды EABCD равна .

Ответ

kS + l .

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
неизвестно
Номер 7895

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .