Условие
В треугольной пирамиде
CDEF ребро
EF перпендикулярно плоскости
CDF . Четырёхугольник
ABCD лежит в плоскости, параллельной прямой
EF . В четырёхугольную пирамиду
EABCD с вершиной
E вписан шар.
Отношение расстояния от центра шара до прямой
AB к расстоянию от
точки
E до плоскости
ABCD равно
l , а отношение отрезка
EF к
к расстоянию от точки
E до плоскости
ABCD равно
k . Пусть точка
C' – проекция точки
C на плоскость
ABE . Известно, что
tg C'AB: tg CAB = m . Через середину отрезка
AE
проведена плоскость
P , параллельная плоскости
BCD . Найдите площадь
сечения плоскостью
P многогранника
ABCDEF , составленного из пирамид
CDEF и
EABCD, если известно, что площадь треугольника
CDF равна
S ,
а сумма площадей всех граней пирамиды
EABCD равна
.
Ответ
kS + l .
Источники и прецеденты использования
|
web-сайт |
Название |
Система задач по геометрии Р.К.Гордина |
URL |
http://zadachi.mccme.ru |
неизвестно |
Номер |
7895 |