Условие
Многогранник
ABCDE составлен из треугольных пирамид
ABCD и
BCDE , причём прямая
DE параллельна плоскости
ABC . В пирамиду
BCDE вписан шар,
k1
– отношение расстояния от его центра
до прямой
DE к расстоянию от прямой
DE до плоскости
ABC . В
пирамиду
ABCD вписан шар,
k2
– отношение расстояния от его
центра до прямой
AB к расстоянию от прямой
DE до плоскости
ABC .
Двугранный угол пирамиды
BCDE с ребром
DE равен
α , а
двугранный угол пирамиды
ABCD с ребром
AD равен
β . Известно,
что
sin CAD: sin BAC = l . Через середину отрезка
AD
проведена плоскость
P , параллельная плоскости
ABC . Найдите площадь
сечения многогранника
ABCDE плоскостью
P , если известно, что суммы
площадей всех граней пирамид
BCDE и
ABCD равны
1
и
2
соответственно.
Ответ
k1
1
sin +
.
Источники и прецеденты использования
|
web-сайт |
Название |
Система задач по геометрии Р.К.Гордина |
URL |
http://zadachi.mccme.ru |
неизвестно |
Номер |
7896 |