|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите неравенство (a + b + c + d + 1)² ≥ 4(a² + b² + c² + d²) при a, b, c, d ∈ [0, 1]. Сферы с центрами в точках O1 и O2 радиусов 3 и 1 соответственно касаются друг друга. Через точку M , удалённую от O2 на расстояние 3 , проведены две прямые, каждая из которых касается обеих сфер, причём точки касания лежат на прямых по одну сторону от точки M . Найдите угол между касательными, если известно, что одна из них образует с прямой O1O2 угол 45o . |
Задача 87599
УсловиеОтрезки AD , BD и CD попарно перпендикулярны. Известно, что площадь треугольника ABC равна S , а площадь треугольника ABD равна Q . Найдите площадь ортогональной проекции треугольника ABD на плоскость ABC .РешениеПусть O – ортогональная проекция точки D на плоскость ABC . Тогда треугольник AOB есть ортогональная проекция треугольника ABD на плоскость ABC . Пусть прямая CO – пересекает прямую AB в точке M . Прямая DC перпендикулярна двум пересекающимся прямым DA и DB плоскости ADB . Поэтому DCСледовательно, ОтветИсточники и прецеденты использования
|
||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|