ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 97848
Темы:    [ Инварианты ]
[ Деление с остатком ]
Сложность: 4-
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Автор: Ильичев В.

На острове Серобуромалин обитают 13 серых, 15 бурых и 17 малиновых хамелеонов. Если встречаются два хамелеона разного цвета, то они одновременно меняют свой цвет на третий (серый и бурый становятся оба малиновыми и т.п.). Может ли случиться так, что через некоторое время все хамелеоны будут одного цвета?


Решение

Пусть c – число серых хамелеонов, а b – число бурых. Заметим, что остаток от деления  c – b  на 3 – инвариант. Действительно, при встрече серого хамелеона с бурым, разность не меняется, при встрече серого с малиновым – уменьшается на 3, а при встрече бурого с малиновым – увеличивается на 3. В начале указанный остаток равен 1. Если же все хамелеоны станут одного цвета, то он равен 0 (разность  c – b  равна 0 или ±45). Следовательно, это невозможно.


Ответ

Не может.

Замечания

1. 12 баллов.

2. Подробное обсуждение и обобщение см. в решениях Задачника "Кванта".

Источники и прецеденты использования

журнал
Название "Квант"
год
Год 1985
выпуск
Номер 3
Задача
Номер М914
олимпиада
Название Турнир городов
Турнир
Дата 1984/1985
Номер 6
вариант
Вариант осенний тур, подготовительный вариант, 9-10 класс
Задача
Номер 5
олимпиада
Название Турнир городов
Турнир
Дата 1984/1985
Номер 6
вариант
Вариант осенний тур, основной вариант, 7-8 класс
Задача
Номер 5
книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 12
Название Инвариант
Тема Инварианты
задача
Номер 010

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .