ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 98157
Тема:    [ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Докажите, что существует такой набор из 100 различных натуральных чисел c1, c2, ..., c100, что для любых двух соседних чисел ci и ci+1 этого набора сумма     есть квадрат целого числа.


Решение

Рассмотрим, например, числа  ci = 3100–i·4i–1. Действительно,
     

Замечания

1. Существует даже бесконечный набор таких чисел: положим  c1 = 5,     где  k ≥ 3  – нечётный делитель числа cn или  k = 4,  при
cn = 2m ≥ 8.  Тогда  cn+1 > cn  и  

2. 4 балла.

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 1992/1993
Номер 14
вариант
Вариант осенний тур, основной вариант, 10-11 класс
Задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .