Страница: 1
2 >> [Всего задач: 6]
Задача
98157
(#1)
|
|
Сложность: 3+ Классы: 7,8,9
|
Докажите, что существует такой набор из 100 различных натуральных чисел
c1, c2, ..., c100, что для любых двух соседних чисел ci и ci+1 этого набора сумма есть квадрат целого числа.
|
|
Сложность: 3+ Классы: 9,10,11
|
Куб с ребром n составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких n это возможно?
Задача
98159
(#3)
|
|
Сложность: 4 Классы: 10,11
|
Числовая последовательность определяется условиями:
Сколько полных квадратов встречается среди первых членов этой последовательности, не превосходящих 1000000?
Задача
98160
(#4)
|
|
Сложность: 4+ Классы: 8,9,10
|
В таблице m строк, n столбцов. Горизонтальным ходом называется такая перестановка элементов таблицы, при которой каждый элемент остаётся в той строке, в которой он был и до перестановки; аналогично определяется вертикальный ход ("строка" в предыдущем определении заменяется на "столбец"). Укажите такое k, что за k ходов (любых) можно получить любую перестановку элементов таблицы, но существует такая перестановка, которую нельзя получить за меньшее число ходов.
Биссектриса угла A треугольника ABC пересекает описанную окружность в точке D. Пусть P – точка, симметричная центру вписанной окружности треугольника ABC относительно середины стороны BC, M – вторая точка пересечения прямой DP с описанной окружностью. Докажите, что расстояние от точки M до одной из вершин A, B, C равно сумме расстояний от M до двух других вершин.
Страница: 1
2 >> [Всего задач: 6]