Страница: 1
2 3 4 5 6 7 >> [Всего задач: 56]
Вписанную окружность спроецировали на стороны треугольника.
Докажите, что шесть концов проекций принадлежат одной
окружности.
Прямая l пересекает окружность с диаметром AB в точках C и D, отличных от A и B. Из точек A и B к прямой l проведены перпендикуляры AE и BF соответственно. Докажите, что CE = DF.
|
|
Сложность: 3+ Классы: 7,8,9,10
|
По каждой из двух пересекающихся прямых с постоянными скоростями, не меняя
направления, ползёт по жуку. Известно, что проекции жуков на ось OX
никогда не совпадают (ни в прошлом, ни в будущем). Докажите, что проекции жуков на ось OY обязательно совпадут или совпадали раньше.
[Круги в квадрате]
|
|
Сложность: 3+ Классы: 7,8,9
|
Внутри квадрата со стороной 1 расположены несколько кругов, сумма радиусов которых равна 0,51. Доказать, что найдется прямая, которая параллельна одной из сторон квадрата и пересекает, по крайней мере, 2 круга.
Дан произвольный треугольник
ABC и такая прямая
l, пересекающая
треугольник, что расстояние от неё до точки
A равно сумме расстояний до этой прямой от точек
B и
C (причем
B и
C лежат по одну сторону от
l). Доказать, что все такие прямые проходят через одну
точку.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 56]