ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Федотов А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 2]      



Задача 98389

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Признаки подобия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 8,9,10

Автор: Федотов А.

Барон Мюнхгаузен утверждает, что ему удалось составить некоторый прямоугольник из нескольких подобных между собой непрямоугольных треугольников. Можно ли ему верить? (Среди подобных треугольников могут быть и равные.)

 
Прислать комментарий     Решение

Задача 108067

Темы:   [ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4-
Классы: 8,9

Автор: Федотов А.

В треугольник ABC вписана окружность с центром O. Медиана AD пересекает её в точках X и Y. Найдите угол XOY, если  AC = AB + AD.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .