ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 1]      



Задача 66725

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанный угол равен половине центрального ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 8,9,10,11

Равнобокая трапеция $ABCD$ с основаниями $AD$ и $BC$ вписана в окружность с центром $O$. Прямая $BO$ пересекает отрезок $AD$ в точке $E$. Пусть $O_1$ и $O_2$ — центры описанных окружностей треугольников $ABE$ и $DBE$ соответственно. Докажите, что точки $O_1, O_2, O, C$ лежат на одной окружности.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .